And The King Goes Down

Tokens are great. Well, sometimes.

Today’s case-study will discuss the importance of a Token Manager software.
Well, every site which allows login normally will use a token on each of the ‘critical’ actions it allows users to do. Facebook, for example, automatically adds a token at the end of any link a user provide, and even their own links! This mechanism is called ‘Linkshim’ and it is the primary reason why you never hear about Facebook open redirects, CSRFs or clickjacking (yeah yeah I know they simply not allowing iframes to access them, I’ll write a whole case-study about that in the near future).
Facebook’s method is pretty simple – if a link is being added to the page – add a token at the end of it. The token, of course, should allow only for the same logged-in user to access the URL, and there should be a token count to restrict the number of times a token should be used (hint- only once).

But what happens when tokens are being managed in a wrong approach?

A very famous security company, which still hasn’t allowed us to publish it’s name, allowed users to create a team. When a user creates a team, he is the owner of the team – he has the ‘highest’ role, and he basically controls the whole team actions and options – he can change the team’s name, invite new people to the team, change roles of people in the team and so on.

The team offers the following roles: Owner, Administrator and some other minor non-important roles. Only the owner and administrators of the team are able to invite new users to the team. An invitation can be sent only to person who is not on the team and does not have an account on the company’s web. When the receiver will open the mail he will be redirected to a registration page of the company, and then will be added to the team with the role the Owner/Admin set.

When I first looked at the team options I noticed that after the owner or an admin invites other people to the team via email, he can resend the invitation in case the invited user missed it or deleted it by accident. The resend options was a link at the side of each invitation. Clicking the link created a POST request to a certain ‘Invitation manager’ page, and passed it the invitation ID.

That’s where I started thinking. Why passing the invitation ID as is? Why not obfuscate it or at least use a token for some sort of validation?

Well, that’s where the gold is, baby. Past invitation IDs were not deleted. That means that invitations that were approved were still present on the database, and still accessible.

By changing the passed invitation ID parameter to the ‘first’ invitation ID of the Owner – It was possible to resend an invitation to him.
At first I laughed and said ‘Oh well, how much damage could it make besides spam the owner a bit?’. But I was wrong. Very wrong.

When the system detected that an invitation to the owner was sent, it removed the owner from his role. But further more – remember that I said that sending an invitation sends the receiver a registration page according to his email address? The system also wiped the owner’s account – his private details, and most important – his credentials. This caused the whole account of the owner to be blocked. A classic DoS.

So how can we prevent unwanted actions to be performed on our server? That’s kind of easy.
First, lets attach an authenticity token to each action. The authenticity token must be generated specifically and individually to each specific user.
Second, like milk and cheese – lets attach an expiration date for the token. 2 Minutes expiration date is the fair time to allow our token to be used by the user.
And last, lets delete used tokens from the accessible tokens mechanism. A token should be used only once. If a user has got a problem with that – generate a few tokens for him.

For conclusion,
This case-study presented a severe security issue that was discovered in the code of some very famous security company.
The security issue could have been prevented by following three simple principals – 1) Attaching a token to each action that is being performed by a user. 2) Setting a rational extirpation time for each token. 3) And most importantly – correctly managing the tokens and deleting used ones.